

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 4903–4906

Tetrahedron Letters

Synthesis of novel 1-*N*-iminosugars from chiral nonracemic bicyclic lactams

Juan Xie,^{a,*} Tatyana Güveli,^a Séverine Hebbe^b and Luc Dechoux^{b,*}

^aStructure et Fonction des Molécules Bioactives (UMR CNRS 7613), Equipe Chimie des Glucides,

Case courrier 179, Université P. et M. Curie, 4 place Jussieu, 75005 Paris, France

Laboratoire de Synthèse Asymétrique (UMR CNRS 7611), Case courrier 47, Universite P. et M. Curie, 4 place Jussieu, 75005 Paris, France

Received 19 March 2004; revised 21 April 2004; accepted 21 April 2004

Abstract—This communication reported the synthesis of novel C-6 substituted isofagomine analogues from easily accessible chiral nonracemic bicyclic lactams. These azasugars have potentially very interesting structure and are difficult to obtain by other methods.

2004 Elsevier Ltd. All rights reserved.

Polyhydroxylated piperidines such as 1-deoxynojirimycin and isofagomine are strong inhibitors of glycosidases, presumably by mimicking the transition state of enzymatic glycoside cleavage.¹ These compounds are now finding clinical applications as anti-HIV,² anticancer,³ antidiabetic agents⁴ or in the treatment of Gaucher disease.⁵ The promising therapeutic potential of iminosugars has led to increased interest and demand. Homologues, N-substituted, deoxygenated, and a number of other 1-deoxynojirimycin and isofagomine derivatives have been synthesized during the last few years.6 Most of the syntheses start from carbohydrates and in general require numerous steps to reach a specific target. The development of efficient and general procedures for their synthesis is still an area of great interest, not only for the synthesis of natural products, but also for that of chemically modified analogues.

Recently, chiral nonracemic bicyclic lactams derived from homochiral β -aminoalcohols have found wide applications in the asymmetrical synthesis of substituted heterocycles.7 Several iminosugars have been prepared in a rapid and efficient way by employing the appropriate bicyclic lactam template.8 However, to the best of our knowledge, no isofagomine analogue has ever been prepared from chiral bicyclic lactam.^{1,9} Subsequent to our preceding stereocontrolled synthesis of new bicyclic lactams,¹⁰ we envisaged the preparation of $1-N$ -iminosugars A (Fig. 1) as stereoisomers or derivatives of isofagomine from chiral bicyclic lactam 1. As shown in the retrosynthesis (Scheme 1), the target molecule A is accessible from the dihydroxylated lactam B, which could be obtained from 1, via unsaturated compound C. In this paper, we report the development of this strategy with methyl substituted lactam 1 (\overline{R} = Me).

We started the synthesis from the bicyclic lactam 1a, obtained stereoselectively from (S) -phenylglycinol 6 ,^{10c} by introducing an unsaturation using the mild selenoxide syn-elimination method (Scheme 2). Treatment of the anion of 1a with PhSeBr led to a mixture of monoselenide 2 and di-selenide 3. The ratio 2/3 was dependant

Figure 1. Structure of natural and target iminosugars.

Keywords: Isofagomine; 1-N-Iminosugars; Chiral bicyclic lactams.

^{*} Corresponding authors. Tel.: +33-1-44275893; fax: +33-1-44275513 (J.X.); tel./fax: $+33-1-44272620$ (L.D.); e-mail addresses: [xie@ccr.](mail to: xie@ccr) jussieu.fr; dechoux@ccr.jussieu.fr

^{0040-4039/\$ -} see front matter \odot 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.04.121

Scheme 1. Retrosynthesis of iminosugars A.

Scheme 2. Reagents and conditions: (a) (i) LiHMDS (1.2 equiv), THF, -78° C, 1 h; (ii) PhSeBr (1.5 equiv), -78 to -50° C, 0.5 h; 2: 40%, 3: 29%; (b) *m*CPBA (2.3 equiv), THF, -15° C, 0.5 h or 3 equiv NaIO₄, THF, rt, 15 h, 50%.

on the quantity of base and PhSeBr: the best result (2/ $3 = 40/29$) was obtained using 1.2 equiv LiHMDS and 1.5 equiv PhSeBr. Subsequent periodate or mCPBA oxidation of 2 followed by benzeneselenenic acid elimination, produced however the pyridone 5, instead of the desired α , β -unsaturated molecule 4. The instability of α , β -unsaturated bicyclic lactams with similar structures and their spontaneous transformation into the corresponding pyridone as a minor product has recently been observed.¹

To avoid this side reaction, we decided to reduce first the ester function, which could be the cause of this elimination reaction. Furthermore, in order to obtain several stereoisomers of 1-N-iminosugars A, the synthesis was started with 1b,c (stereoisomers of 1a), which are readily accessible from (R) -phenylglycinol ent-6 as a mixture of cis and trans diastereomers $(1b/1c = 55/45).$ ^{10a} Reduction of the ester function with LiAlH₄ gave primary alcohols, which were protected as benzyl ethers 7b,c. At this stage, the two diastereomers 7b and 7c were easily separated by silica gel chromatography. The required unsaturated lactams 8b and 8c were prepared separately by phenylselenenylation followed by oxidative elimination with mCPBA (Scheme 3).

Dihydroxylation with $OsO₄$ cat./Ba(ClO₃)₂¹² furnished $9b^{13}$ and $9c^{13}$ as single stereoisomers in 51% and 79% yields, respectively. Consequently, the same exo-facial diastereoselectivity was obtained with the two diasteroisomers 8b and 8c. This stereoselectivity has already been observed in the dihydroxylation of analogous unsaturated lactams. $8a,9g$ These results suggest that the

Scheme 3. Reagents and conditions: (a) (i) LiAlH₄ (1 equiv), THF, 0° C to rt, 5 h; (ii) NaH (1.4 equiv), THF, 0° C, BnBr (1.5 equiv), 24 h; (b) (i) LiHMDS (1.4 equiv), PhSeBr (1.5 equiv), THF, $-78 \degree$ C; (ii) $mCPBA$ (3 equiv), CH_2Cl_2 , rt, 1 h 30; (c) OsO₄ (0.28 equiv), Ba(ClO₃)₂ $(1.5-3 \text{ equiv})$, THF/H₂O $(2:1)$, 4d.

stereoselectivity is not governed by the stereogenic center bearing the methylenebenzyloxy group but by the more remote phenyl- and methyl-bearing stereocenters (stereocenters which define the exo and endo faces).

The reduction of lactams **9b** and **9c** with $BH_3 \cdot Me_2S$ furnished the easily separable piperidines $10b, b'$ and 10c,c', but with low diastereoselectivities (de <10% in the two cases as determined by 1H NMR of the crude mixtures) (Scheme 4). These results contrast with the high facial selectivity (retention of configuration at C-6) generally observed during the reduction of analogous bicyclic lactams. 8a,c,d,10b The lack of stereoselectivity in the reduction of the hydroxylated bicyclic lactams 9b and 9c could be explained by a competitive precomplexation¹⁴ of the borane by one of the two hydroxyl groups. Finally, hydrogenolysis of piperidines 10b and 10c with $Pd(OH)_2$ in methanol led to the expected analogues of isofagomine $11b^{13}$ and $11c^{13}$ in good yields.

In summary, synthesis of novel 1-N-iminosugars has been developed from the easily available bicyclic lactams 1. These compounds constitute the first examples of analogues of isofagomine substituted on the C-6 position, which are difficult to obtain by other methods so far reported. The methodology reported therein should provide access to other new C-6 substituted 1-N-iminosugars as potential glycosidase inhibitors.

Scheme 4. Reagents and conditions: (a) $BH₃$ DMS (6–10 equiv), THF, 0 °C to rt, 1 d; (b) Pd(OH)₂ (0.6 equiv), MeOH, rt, 4–6 d.

References and notes

- 1. Bols, M. Acc. Chem. Res. 1998, 31, 1.
- 2. Ratner, L.; Heyden, N. V.; Dedera, D. Virology 1999, 181, 180, and references cited therein.
- 3. Gross, P. E.; Baker, M. A.; Carver, J. P.; Dennis, J. W. Clin. Cancer Res. 1995, 1, 935.
- 4. (a) Anzeveno, P. B.; Creemer, L. J.; Daniel, J. K.; King, C.-H. R.; Liu, P. S. J. Org. Chem. 1989, 54, 2539; (b) Balfour, J. A.; McTavish, D. Drugs 1993, 46, 1025.
- 5. Butters, T. D.; Dxek, R. A.; Platt, F. M. Chem. Rev. 2000, 100, 4683.
- 6. (a) Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M. Chem. Rev. 2002, 102, 515; (b) Iminosugars as Glycosidase Inhibitors-Nojirimycin and Beyond; Stütz, A., Ed.; Wiley-VCH: Weinheim, 1999; (c) van den Berg, R. J. B. H. N.; Donker-Koopman, W.; van Boom, J. H.; Aerts, H. M. F. G. Bioorg. Med. Chem. 2004, 12, 891.
- 7. (a) Meyers, A. I.; Brengel, G. P. Chem. Commun. 1997, 1; (b) Groaning, M. D.; Meyers, A. I. Tetrahedron 2000, 56, 9843; (c) Amat, M.; Llor, N.; Hidalgo, J.; Escolano, C.; Bosch, J. J. Org. Chem. 2003, 68, 1919.
- 8. (a) Meyers, A. I.; Andres, C. J.; Resek, L. E.; Woodall, C. C.; McLaughlin, M. A.; Lee, P. H.; Price, D. A. Tetrahedron 1999, 52, 8931; (b) Meyers, A. I.; Andres, C. J.; Resek, L. E.; McLaughlin, M. A.; Woodall, C. C.; Lee, P. H. J. Org. Chem. 1996, 61, 2586; (c) Meyers, A. I.; Price, D. A.; Andres, C. J. Synlett 1997, 533; (d) Meyers, A. I.; Price, D. A. Chirality 1998, 10, 88.
- 9. For recent synthesis of azasugars, see: (a) Ichikawa, Y.; Igarashi, Y.; Ichigawa, M.; Suhara, Y. J. Am. Chem. Soc. 1998, 120, 3007; (b) Jensen, H. H.; Lohse, A.; Petersen, B. O.; Duus, J. O.; Bols, M. J. Chem. Soc., Perkin Trans. 1 2000, 667; (c) Uldall Hansen, S.; Bols, M. J. Chem. Soc., Perkin Trans. 1 2000, 911; (d) Pandey, G.; Kapur, M. Tetrahedron Lett. 2000, 41, 8821; (e) Liang, X.; Lohse, A.; Bols, M. J. Org. Chem. 2000, 65, 7432; (f) Pandey, G.; Kapur, M. Synthesis 2001, 8, 1263; (g) Amat, M.; Llor, N.; Huguet, M.; Molins, E.; Espinosa, E.; Bosch, J. Org. Lett. 2001, 3, 3257; (h) Pandey, G.; Kapur, M. Org. Lett. 2002, 4, 3883; (i) Patil, N. T.; John, S.; Sabharwal, S. G.; Dhavale, D. D. Bioorg. Med. Chem. 2002, 10, 2155; (j) Han, H. Tetrahedron Lett. 2003, 44, 1567; (k) Pandey, G.; Kapur, M.; Klan, M. I.; Gaikwad, S. M. Org. Biomol. Chem. 2003, 1, 3321; (l) Ostrowski, J.; Altenbach, H.-J.; Wischnat, R.; Brauer, D. J. Eur. J. Org. Chem. 2003, 1104.
- 10. (a) Agami, C.; Dechoux, L.; Hebbe, S. Tetrahedron Lett. 2002, 43, 2521; (b) Agami, C.; Dechoux, L.; Menard, C.; Hebbe, S. J. Org. Chem. 2002, 67, 7573; (c) Agami, C.; Dechoux, L.; Hebbe, S. Tetrahedron Lett. 2003, 44, 5311.
- 11. Amat, M.; Bosch, J.; Hidalgo, J.; Conto, M.; Perez, M.; Llor, N.; Molins, E.; Miravitlles, C.; Orozco, M.; Lugue, J. J. Org. Chem. 2000, 65, 7074.
- 12. Danishefsky, S.; Schuda, P. F.; Kitakara, T.; Etheredgl, S. J. J. Am. Chem. Soc. 1977, 99, 6066.
- 13. Selected physical data. Compound 9b: ¹H NMR (CDCl₃, 400 MHz): 1.32 (s, 3H, H-9), 2.21 (ddd, 1H, $J = 1.2, 4.8$, 8.6 Hz, H-8), 2.84 (s, 1H, OH), 3.74 (dd, 1H, $J = 5.1$, 9.1 Hz, H-10), 3.82 (t, 1H, $J = 8.8$ Hz, H-10), 3.93 (dd, 1H, $J = 7.3$, 8.8 Hz, H-2), 4.00 (d, 1H, $J = 3.8$ Hz, H-6), 4.49 (dd, 1H, $J = 1.5$, 3.8 Hz, H-7), 4.55 (t, 1H, $J = 9.1$ Hz, H-2), 5.27 (t, 1H, $J = 8.1$ Hz, H-3), 7.08–7.25 (m, 10H, Ph); ¹³C NMR (CDCl₃): 21.5 (C-9), 46.2 (C-8), 58.4 (C-3), 66.0 (C-7), 66.6 (C-10), 69.8 (C-2), 70.7 (C-6), 73.3 (C-11), 94.6 (C-8a), 125.2, 127.0, 127.6, 128.3, 128.4 (Ph); 137.4, 139.9 (Cipso); 170.0 (CO). Compound $9c: {}^{1}H$ NMR (CDCl3): 1.52 (s, 3H, H-9), 2.80 (dt, 1H, $J = 4.8$, 8.3 Hz, H-8), 3.25 $(s, 1H, OH), 3.51$ (dd, $1H, J = 8.6, 9.8$ Hz, H-10), 3.74 (dd, 1H, $J = 4.6$, 9.8 Hz, H-10), 3.90 (dd, 1H, $J = 7.4$, 8.6 Hz,

H-2), 4.25 (d, 1H, $J = 3.8$ Hz, H-6), 4.40–4.49 (m, 4H, H-2,7,11), 5.19 (t, 1H, $J = 8.1$ Hz, H-3), 7.09–7.29 (m, 10H, Ph); ¹³C NMR (CDCl₃): 27.4 (C-9), 45.5 (C-8), 58.2 (C-3), 67.3 (C-10), 68.7, 68.8 (C-6,7); 69.7 (C-2), 73.5 (C-11), 94.1 (C-8a), 125.2, 127.3, 127.5, 127.8, 128.5, 128.6 (Ph); 137.7, 139.7 (Cipso); 169.4 (CO). Compound 11b: ¹H NMR (CD₃OD, 400 MHz): 1.22 (d, 3H, $J = 6.8$ Hz, H-7), 1.67 $(m, 1H, H-5)$, 2.26 (dd, 1H, $J = 3$, 13.1 Hz, H-2), 2.30 (m, 1H, H-6), 3.02 (dd, 1H, $J = 1.8$, 13.1 Hz, H-2), 3.70 (m, 2H, H-3,4), 3.83 (dt, 1H, $J = 1.3$, 12.1 Hz, H-8), 3.90 (dd, 1H, $J = 3.5$, 11.8 Hz, H-8); ¹³C NMR (CD₃OD): 17.7 (C-

7), 44.3 (C-5), 56.5 (C-8), 60.4 (C-2), 62.6 (C-6), 67.4, 70.3 $(C-3,4)$. Compound 11c: ¹H NMR $(CD_3OD, 400 MHz)$: 1.19 (d, 3H, $J = 6.5$ Hz, H-7), 1.45 (tt, 1H, $J = 3$, 10.5 Hz, H-5), 2.65 (m, 1H, H-6), 2.71 (dd, 1H, $J = 1.5$, 14 Hz, H-2), 2.99 (dd, 1H, $J = 2.7$, 13.7 Hz, H-2), 3.65 (dd, 1H, $J = 3.2, 5.2$ Hz, H-8), 3.70 (dd, 1H, $J = 3.7, 6.5$ Hz, H-8), 3.82 (m, 1H, H-3), 3.92 (dd, 1H, $J = 2.7$, 11.2 Hz, H-4); ¹³C NMR (CD₃OD): 20.1 (C-7), 49.8 (C-5), 51.4 (C-2), 53.3 (C-6), 60.8 (C-8), 70.0, 71.8 (C-3,4).

14. Beak, P.; Meyers, A. I. Acc. Chem. Res. 1986, 19, 356.